
Efficient Identification of Implicit
Facts in Incomplete OWL2-EL

Knowledge Bases

John Liagouris, Manolis Terrovitis

IMIS - Research Center “Athena”

Web Ontology Language (OWL)

●  Extends the RDF Schema (RDFS)
o  rdfs:Class, rdfs:Property

●  Complex class expressions
o  Woman ≡ Person ⨅ Female

●  Complex property expressions
o  hasMother ∘ hasSister ⊑ hasAunt

●  Property characteristics
o  We can define a RDF property like “isSiblingWith” as
symmetric and transitive

Web Ontology Language (OWL)

●  The semantics of OWL imply additional
knowledge, i.e., new RDF triples

<mary rdf:type Woman> + “Woman ≡ Person ⨅ Female”
 ⇓

 <mary rdf:type Person>
 <mary rdf:type Female>

●  Such “hidden” triples cannot be queried
directly with traditional SPARQL engines

●  Reasoning is needed

Complexity of Reasoning in OWL

●  Exponential for OWL in general

●  Three tractable fragments:

o  OWL2-QL
o  OWL2-EL
o  OWL2-RL

●  Each fragment poses different restrictions in

the syntax of OWL

Problem

●  We are given a large collection of OWL2-EL
axioms and a set of inference rules

●  Goal: Infer all axioms that are implied by the

rules

●  How: Apply all rules to the collection of

axioms exhaustively till no new axioms are
produced (fix-point)

Running Example
We are given a collection of OWL2-EL axioms of the form
X ⊑ Y:

1.  InfectedWithVirusA ⊓ NotVaccinated ⊑ Ill
2.  ∃Vaccinated.VaccineTypeX ⊑ NotVaccinated
3.  Vaccinated1994 ⊑ ∃Vaccinated.{va}
4.  {va} ⊑ VaccineTypeX
5.  {john} ⊑ Vaccinated1994
6.  {john} ⊑ InfectedWithVirusA

Running Example
1.  InfectedWithVirusA ⊓ NotVaccinated ⊑ Ill
2.  ∃Vaccinated.VaccineTypeX ⊑ NotVaccinated
3.  Vaccinated1994 ⊑ ∃Vaccinated.{va}
4.  {va} ⊑ VaccineTypeX
5.  {john} ⊑ Vaccinated1994
6.  {john} ⊑ InfectedWithVirusA

From axioms 3, 4 and 2 → 7. Vaccinated1994 ⊑ NotVaccinated
From axioms 7, 4 and 2 → 8. {john} ⊑ NotVaccinated
From axioms 6, 8 and 1 → 9. {john} ⊑ Ill

Running Example
1.  InfectedWithVirusA ⊓ NotVaccinated ⊑ Ill
2.  ∃Vaccinated.VaccineTypeX ⊑ NotVaccinated
3.  Vaccinated1994 ⊑ ∃Vaccinated.{va}
4.  {va} ⊑ VaccineTypeX
5.  {john} ⊑ Vaccinated1994
6.  {john} ⊑ InfectedWithVirusA

From axioms 3, 4 and 2 → 7. Vaccinated1994 ⊑ NotVaccinated

From axioms 5 and 7 → 8. {john} ⊑ NotVaccinated
From axioms 6, 8 and 1 → 9. {john} ⊑ Ill

Running Example
1.  InfectedWithVirusA ⊓ NotVaccinated ⊑ Ill
2.  ∃Vaccinated.VaccineTypeX ⊑ NotVaccinated
3.  Vaccinated1994 ⊑ ∃Vaccinated.{va}
4.  {va} ⊑ VaccineTypeX
5.  {john} ⊑ Vaccinated1994
6.  {john} ⊑ InfectedWithVirusA

From axioms 3, 4 and 2 → 7. Vaccinated1994 ⊑ NotVaccinated

From axioms 7 and 5 → 8. {john} ⊑ NotVaccinated

From axioms 6, 8 and 1 → 9. {john} ⊑ Ill

Challenges

●  Inference rules for OWL2-EL are complex
and mutually recursive (each one affects the
other)

●  The collection of axioms does not always fit

in main-memory

●  The inference requires repetitive scans of

the axioms
o  The problem becomes I/O bounded.

Our Contribution

●  All existing rule engines apply the inference
rules sequentially

●  They scan the ontology on a per-rule basis

●  We define a uniform access pattern which

allows for the in-bulk application of many
rules within the same scan

Graph Model
2.  ∃Vaccinated.VaccineTypeX ⊑ NotVaccinated

Graph Model
4.  {va} ⊑ VaccineTypeX

Graph Model
3.  Vaccinated1994 ⊑ ∃Vaccinated.{va}

Graph Model
5.  {john} ⊑ Vaccinated1994

Graph Model
6.  {john} ⊑ InfectedWithVirusA

Graph Model

1.

Inference on the Graph

1.

Inference on the Graph

1.

Inference on the Graph

1.

Idea of the Algorithm

●  Store the graph in a way that allows efficient
lookups in the neighbourhood of each node

●  Keep track of the changes made in the

graph

●  At each subsequent step check only the

neighbourhoods affected from the previous
step

Experiments

●  Real ontologies
o  SNOMED CT
o  GALEN8

●  Synthetic ontologies

o  Ontologies of different sizes whose graphs are
isomorphic to the graphs of SNOMED CT and GALEN

o  Ontologies of different sizes by increasing the number
of labeled edges per node

Experiments on Real Data
(SNOMED CT)

BRA: Batch Rule Application YAP, XSB: Prolog-based systems
ORT: One Rule at a Time DLV, LogicBlox: Datalog engines
BRA-M: Main-memory version of BRA

Experiments on Real Data
(GALEN8)

BRA: Batch Rule Application YAP, XSB: Prolog-based systems
ORT: One Rule at a Time DLV, LogicBlox: Datalog engines
BRA-M: Main-memory version of BRA

Experiments on Real Data
(Optimizations)

BRA: Batch Rule Application SN: BRA without optimizations
BRA-A: BRA on the schema of ORT ORT: One Rule at a Time

Experiments on Synthetic Data
(Isomorphic Graphs of SNOMED CT)

Experiments on Synthetic Data
(Isomorphic Graphs of GALEN8)

Experiments on Synthetic Data
(Increasing Node Degree for GALEN8)

OWL2-EL Syntax and Semantics

●  Intersection of Classes
o  Father ≡ Male ⨅ Parent
o  “Father is the class of all individuals which are of type

Male and also of type Parent”

●  Existential Restrictions

o  Grandparent ≡ ∃hasChild.Parent
o  “Grandparent is the class of all individuals which are

linked through property “hasChild” with an individual of
type Parent”

OWL2-EL Syntax and Semantics

●  Reflexivity
o  Narcissus ≡ ∃likes.Self
o  “Narcissus is the class of all individuals which are

linked through property ‘likes’ with themselves”

●  Property axioms

o  hasSister ⊑ siblingWith
o  hasMother ∘ hasSister ⊑ hasAunt

OWL2-EL Syntax and Semantics

●  Singleton Nominals (individuals/instances)

o  {mary} ⊑ Woman ↔ <mary rdfs:type Woman>

o  {mary} ⊑ ∃siblingWith.{tom} ↔ <mary siblingWith tom>

o  {mary} ≡ {maria} ↔ <mary owl:sameAs maria>

●  These are the actual data modeled with the

ontology

Why OWL2-EL??

●  It is widely used in Life Sciences

●  Large OWL2-EL ontologies like SNOMED CT

have become vital parts of the Health
Information Systems in many countries

●  It supports the definition of Tuple-Generating

Dependencies (TGDs)
o  Suitable for data integration scenarios

