LDBC Social Network Benchmark

Business Intelligence Workload

Marcus Paradies, SAP SE
Task Force Members

• Task Force members
 • Arnau Prat (DAMA-UPC)
 • Alex Averbuch (Neo Technologies)
 • Moritz Kaufmann (TU München)
 • Marcus Paradies (SAP)
 • Orri Erling (Google)
 • Peter Boncz (CWI)
Interactive and BI Workload

• Interactive workload
 • Only touch a small fraction of the data graph (< 3 hops)
 • Queries usually start at a single person vertex
 • Can be seen as OLTP-style workload

• Business intelligence workload
 • Focus on analytic queries (grouping/aggregations)
 • Queries touch the complete graph
 • Batch updates
 • Can be seen as OLAP-style workload
 • 24 queries in the BI workload

• Interactive and BI workload share the benchmark driver and generated data

• Workload-specific parameter bindings to reduce variability between queries
Examples Queries

Q1 - Posting Summary

Given a date, find all Messages created before that date. Group them by a 3-level grouping:

1. by year of creation
2. for each year, group into message types, i.e., Posts or Comments
3. for each year-type group, split into four groups based on length of their content:
 - 0 <= length < 40 → short
 - 40 <= length < 80 → one liner
 - 80 <= length < 160 → tweet
 - 160 <= length → long

Parameters:

date: Date

6/23/2016
Examples Queries
Q1 - Posting Summary

Result: (*)
For every 3-level group, return:

• year - 32-bit Integer
• message type \rightarrow post/comment
• length category \rightarrow (short/one-liner/tweet/long)
• message count \rightarrow total number of Messages (Posts/Comments) in that group
• average message length \rightarrow average length of the Message content in that group
• sum message length \rightarrow sum of all message content lengths
• per messages \rightarrow number of messages in a group as a percentage of all messages created before the given date

* Final sorting and top k omitted here for brevity
Examples Queries
Q16 - Experts in a Social Circle

Given a Person, find all other Persons that live in a given country and are connected to given person by a path through the knows relation. For each of these Persons, retrieve all of their Messages (Posts & Comments) that contain at least one Tag belonging to a given TagClass (direct relation not transitive). For each Message, also retrieve its Tags.

Parameters:
Person.id - 64-bit Integer
Country.name - String
TagClass.name - String
Examples Queries
Q16 - Experts in a Social Circle

Grouping of results:
First, by Tag.name
Second, by Person.id

Result: (*)
For each group, return:
• Person.id
• Tag.name
• post_count \rightarrow number of Messages created by that Person containing that Tag

* Final sorting and top k omitted here for brevity
SNB BI Workload in a Nutshell

Q1 - Posting summary
Q2 - Top tags for country, age, gender, time
Q3 - Tag evolution
Q4 - Popular topics in a country
Q5 - Top posters in a country
Q6 - Most active Posters of a given Topic
Q7 - Most authoritative users on a given topic
Q8 - Related Topics
Q9 - Forum with related Tags
Q10 - Central Person for a Tag
Q11 - Unrelated Replies
Q12 - Trending Posts
Q13 - Popular Tags per month in a country
Q14 - Top thread initiators
Q15 - Social Normals
Q16 - Experts in Social Circle
Q17 - Friend Triangles
Q18 - How many persons have a given number of posts
Q19 - Stranger's Interaction
Q20 - High level topics
Q21 - Zombies in a country
Q22 - International Dialog
Q23 - Holiday Destinations
Q24 - Messages By Topic And Continent
Choke Point Identification

- Choke point = implementation challenge
- Interactive workload already contains a number of choke points
- We extend them by more choke points from TPC-H that are relevant for BI queries

TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark

Peter Boncz¹, Thomas Neumann², and Orri Erling³

¹ CWI, Amsterdam, The Netherlands
boncz@cwi.nl

² Technical University Munich, Germany
neumann@in.tum.de

³ Openlink Software, United Kingdom
oerling@openlinksv.com

Abstract. The TPC-D benchmark was developed almost 20 years ago, and even though its current existence as TPC-H could be considered superseded by TPC-DS, one can still learn from it. We focus on the technical level, summarizing the challenges posed by the TPC-H workload as we now understand them, which we call "choke points". We identify
Current Status of the BI Workload

• Query Definition
 • All 24 queries are specified in plain english text

• Benchmark Driver
 • Reads generated parameter bindings and issues queries
 • Query mix has to be defined

• 22/24 queries are validated against Sparsity, Neo4j, and Postgres

• Choke points identified for 8/24 queries

Link to Postgres draft reference implementation:

6/23/2016
Outlook and Next Steps

• Finishing of chokepoint identification and analysis of whether all defined chokepoints are already triggered
• Finishing validation of remaining two queries
• Addition of refresh data sets (update batches)
 • Definition
 • Implementation in the benchmark driver
• Final polishing of query specifications