Towards Representation-Independent Graph Querying & Analytics

Arash Termehchy, Oregon State University
Searching for interesting relationships over graph data

Finding related or similar entities to an entity
E.g., find similar movies to the movie “Star Wars III”

IMDb (www.imdb.com)
Algorithms use the graph structure to quantify similarity

- **SimRank**: two objects are similar, if they are referenced by similar objects.
 - how likely two random surfers will meet each other if they start from the two entities.
Same Information – Various Representations

IMDb

Freebase (www.freebase.com)

Other examples: blank nodes, redundancy, ...
• Use SimRank to find similar movie to Star Wars III

Algorithms are effective only over databases that follow certain representations.
Current solution: Data Conversion & Wrangling

• Manually convert data to the desired representation for the algorithm.

- Hard and time consuming
- Algorithms do not provide any definition of desired representations. Thus, users have to apply trial and error.
Each researcher uses her own representation

- It is hard to compare different algorithms because they are evaluated over different representations.
 - E.g. research papers use different representations for DBLP data

Y. Sun et al., **PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks**, PVLDB’11

P. Zhao et al., **P-rank: a comprehensive structural similarity measure over information networks**, CIKM’09
Our approach: representation independence

• We do **NOT** want to convert / wrangle the data!

• Develop algorithms that return the same results for the same query over databases with the same information.

Let’s precisely define representation independent algorithm.
Representation independent algorithm

- An algorithm is **representation independent** if it returns the same answers over databases with the same information.

When do databases represent same information?
Database Transformation

A transformation is a function that maps a database to another one.

\[T_{\text{IMDB2Freebase}} \]
Invertible Transformation

A transformation T is **invertible** if one can reconstruct D from $T(D)$.

T' is not invertible. Cannot recover “char: Han Solo”.

T'' is not invertible. Cannot recover relationship.

Invertible transformation preserves information.

D_1 and D_2 have the same information if there is an invertible transformation between them.
Representation independent algorithm

- Given an invertible transformation T, an algorithm is representation independent under T if it returns the same answers for all queries over a database D and $T(D)$.

- Larger set of transformations \Rightarrow more representation independent.
Our plan for finding representation independent algorithm

• Representation independent similarity search over two types of transformations.
 • Relationship-reorganizing transformation
 • Entity-rearranging transformation

• Extend current algorithms
 ▪ They are effective over certain representations
 ▪ People have already adapted and used these existing methods
Representing relationships between entities in graphs

- **Walk**: a sequence of consecutive nodes and edges it represents a relationship between entities

 \[
 \text{[actor: Christensen, actors, film: Star Wars V, actors, actor: Ford]}
 \]

- **Value** of a walk: tuple of nodes with values in the walk

 \[
 \text{[actor: Christensen, film: Star Wars V, actor: Ford]}
 \]
Representing types of relationships in graphs

- **Meta-walk**: a sequence of labels of nodes in walks
 Meta-walk represents type of relationships between entities

\[
\begin{align*}
\text{[actor: Christensen, actors, film: Star Wars V, actors, actor: Ford]} \\
\text{[actor: Ford, actors, film: Air Force One, actors, actor: Oldman]}
\end{align*}
\]

are walks of a meta-walk

\[
\text{[actor, actors, film, actors, actor]}
\]
Equivalent relationships

- **Content-equivalent**
 - Two walks are content-equivalent if their values are equal.

 ![Diagram showing content-equivalent walks](image)

 \[
 \text{[actor: Christensen, film: Star Wars V, actor: Ford]}
 \]
 is content equivalent to

 \[
 \text{[actor: Christensen, actors, film: Star Wars V, actors, actor: Ford]}
 \]

 - Content-equivalent walks represents same relationship between set of entities

- Notion of content equivalent extends naturally for meta-walks
- Two content equivalent meta-walks represent same type of relationship.
Relationship-constrained similarity search methods

- Measure similarity between entities over a given type of relationship, i.e., meta-walk.

- E.g. find similar actors based on their common movies
 - Meta-walk: [actor, film, actor]

- Different ways of computing similarity within a meta-walk
 - Random walk, enumerating # walks.

- Current methods use paths (meta-paths) to represent relationships.
 - We use walks (meta-walks) for reason which we will later explain.
Relationship-reorganizing transformation

Databases contain the same set of entities and relationships, but relationship are represented in different forms.

Current similarity algorithms are not representation independent under this type transformation.
Why current algorithms fail?

- Relationship reorganization introduces/removes walks

A walk *with* consecutive forward and backward traverses from an entity to a node without value is called **non-informative** walk.

Solution: Ignore non-informative walks
Why current algorithms fail?

• Relationship reorganization introduces/removes meta-walks

There is no content equivalent meta-walk to [actor, actors, actor] in IMDb.
Solution: use inclusion between meta-walks

Observation: every walk of \([\text{actor, actors, actor}]\) is included in exactly one walk of \([\text{actor, actors, film, actors, actor}]\).

A meta-walk is **maximal** if it is not included in any other meta-walk.

There is a bijection between maximal meta-walks in a database and its relationship-reorganizing transformation such that these meta-walks are content-equivalent.
Robust-PathSim (R-PathSim)

Extends PathSim algorithm so that it recognizes and uses only informative walks of maximal meta-walks to computing similarity score between entities.

Theorem
R-PathSim is representation independent under relationship-reorganizing transformation.
Entity-Rearranging Transformation

There is a functional dependency from entity type a to entity type b ($a \rightarrow b$) if every entity of a is connected to only one entity of b.

Functional dependencies: **paper \rightarrow conference**
Given some functional dependencies, entity-rearranging transformation connects set of entities in different orders.

Current similarity algorithms are not representation independent under this type transformation.
Why current algorithms fail?

• Type of relationships in the transformed database may not remain in form of meta-walks.

• Which meta-walk in DBLP represents the same relationship as [conference, area, conference] in SIGMOD Record?

• Potential candidate is [conference, paper, area, paper, conference]
Why current algorithms fail?

- But, [conference, area, conference] in SIGMOD Record and [conference, paper, area, paper, conference] in DBLP does not have the same meaning.

- Find similar conference to KDD using PathSim.
- Number of papers in conferences influences the ranking.
Solution: consider other representation of relationship beyond meta-walk

Meta-walk with *-label

\[[\text{conference}, \text{area}, \text{conference}]\] = \[[\text{conference}, *, \text{area}, *, \text{conference}]\]
Use meta-walk instead of meta-path to represent relationships

Which meta-walk in SIGMOD Rec. should be mapped to [conference, paper, area, paper, conference] in DBLP?

[conference, paper, area, paper, conference] = [conference, paper, conference, area, conference, paper, conference]

This is why we use meta-walks instead of meta-paths.
Too many types of meta-walks.

• People who are not familiar with the database may not be able to express their desired meta-walk.

• Solution: Compute (weighted) average of similarity scores over all maximal meta-walks between entities.

• However, the set of all maximal meta-walks can be very large.
 • It may take a long time to compute score for all of them.

• Solution: pruning techniques to find a small subset of meta-walks to compute the similarity score efficiently.

Theorem R-PathSim is representation independent under relationship-reorganizing transformation and entity rearranging transformation.
Empirical results: Average Ranking Differences

Use Kendall’s tau to measure ranking difference. (0 = no difference, 1 = reverse ranking)

No ranking difference for R-PathSim.

Movies DB Representations
IMDb, MVL: Movielicious, **ASM:** Assignment from evc-cit.info/cit0441x

Bibliographic DB Representations
DBLP, SNAP: Stanford Network Analysis Project

<table>
<thead>
<tr>
<th>Relationship reorganizing</th>
<th>IMDb2MVL</th>
<th>IMDb2ASM</th>
<th>IMDb2Freebase</th>
<th>DBLP2SNAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWR</td>
<td>0.473</td>
<td>0.505</td>
<td>0.170</td>
<td>0.141</td>
</tr>
<tr>
<td>SimRank</td>
<td>0.411</td>
<td>0.458</td>
<td>0.333</td>
<td>0.634</td>
</tr>
<tr>
<td>PathSim</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.564</td>
</tr>
<tr>
<td>Top 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWR</td>
<td>0.444</td>
<td>0.459</td>
<td>0.158</td>
<td>0.134</td>
</tr>
<tr>
<td>SimRank</td>
<td>0.365</td>
<td>0.392</td>
<td>0.337</td>
<td>0.578</td>
</tr>
<tr>
<td>PathSim</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.522</td>
</tr>
<tr>
<td>Top 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWR</td>
<td>0.404</td>
<td>0.415</td>
<td>0.155</td>
<td>0.126</td>
</tr>
<tr>
<td>SimRank</td>
<td>0.343</td>
<td>0.348</td>
<td>0.322</td>
<td>0.493</td>
</tr>
<tr>
<td>PathSim</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.495</td>
</tr>
</tbody>
</table>
Empirical results: Average Ranking Differences

No ranking difference for R-PathSim.

DB about courses

WSU: WSU Course Dataset, **Alchemy:** Alchemy UW-CSE database

<table>
<thead>
<tr>
<th>Entity rearranging</th>
<th>DBLP to SIGMOD Record</th>
<th>WSU to Alchemy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWR</td>
<td>0.482</td>
<td>0.300</td>
</tr>
<tr>
<td>SimRank</td>
<td>0.481</td>
<td>0.440</td>
</tr>
<tr>
<td>PathSim</td>
<td>0.641</td>
<td>0.320</td>
</tr>
<tr>
<td>Top 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWR</td>
<td>0.447</td>
<td>0.259</td>
</tr>
<tr>
<td>SimRank</td>
<td>0.455</td>
<td>0.387</td>
</tr>
<tr>
<td>PathSim</td>
<td>0.608</td>
<td>0.310</td>
</tr>
<tr>
<td>Top 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWR</td>
<td>0.412</td>
<td>0.253</td>
</tr>
<tr>
<td>SimRank</td>
<td>0.410</td>
<td>0.341</td>
</tr>
<tr>
<td>PathSim</td>
<td>0.590</td>
<td>0.247</td>
</tr>
</tbody>
</table>

(0 = no difference, 1 = opposite ranking)
Effectiveness of R-PathSim

- Use the Microsoft Academic Search dataset.
- Randomly sample 50 conferences based on degrees in the dataset.
- For ground truth, given a conference, we manually group all other conferences in 3 categories: similar, quite-similar, least-similar.
- We measure the statistical significance of our results using the paired-t-test at a significant level of 0.05

<table>
<thead>
<tr>
<th></th>
<th>nDCG @ 5</th>
<th>nDCG @ 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathSim</td>
<td>0.625</td>
<td>0.564</td>
</tr>
<tr>
<td>R-PathSim</td>
<td>0.658</td>
<td>0.630</td>
</tr>
</tbody>
</table>
Efficiency of R-PathSim

- **Datasets**
 - Movielicious: 2.4M nodes, 7.5M edges
 - DBLP: 1.2M nodes, 2.7M edges
 - DBLP+: 1.9M nodes, 3.3M edges

- **Hardware configuration**: Linux server with 64GB RAM, 2 quad core CPU.

- **Average query processing time per meta-walk in second**

<table>
<thead>
<tr>
<th>Size of meta-walk</th>
<th>Movielicious</th>
<th>DBLP</th>
<th>DBLP+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathSim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.036</td>
<td>0.030</td>
<td>0.046</td>
</tr>
<tr>
<td>7</td>
<td>0.068</td>
<td>0.347</td>
<td>0.227</td>
</tr>
<tr>
<td>R-PathSim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.036</td>
<td>0.035</td>
<td>0.046</td>
</tr>
<tr>
<td>7</td>
<td>0.068</td>
<td>0.343</td>
<td>0.233</td>
</tr>
</tbody>
</table>

- **Average query processing time for aggregated R-PathSim**

<table>
<thead>
<tr>
<th>Size of meta-walk</th>
<th>Movielicious</th>
<th>DBLP</th>
<th>DBLP+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PathSim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.036</td>
<td>0.091</td>
<td>0.092</td>
</tr>
<tr>
<td>7</td>
<td>0.136</td>
<td>1.041</td>
<td>0.681</td>
</tr>
<tr>
<td>R-PathSim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.036</td>
<td>0.140</td>
<td>0.184</td>
</tr>
<tr>
<td>7</td>
<td>0.136</td>
<td>1.714</td>
<td>1.165</td>
</tr>
</tbody>
</table>
Conclusion & future work

• Graph exploration algorithms are representation dependent and therefore hard-to-use.
 • scale algorithms to work on various representations.
 • scale for the second V in Big Data: Variety.

• We’ve developed representation independent algorithms for some frequent representational shifts.

• To do:
 • benchmark for varieties of representations.

• More information:
 • RIDE: Representation Independent Data Exploration
 http://eecs.oregonstate.edu/~termehca
 • VLDB’15 and VLDB’16 demos.