EdgeFrame: scalable worst-case optimal joins for graph-pattern matching in Spark

Presented by Per Fuchs

Supervised by Peter Boncz and Bogdan Ghit

Master thesis in Computer Science

PDF export of my presentation software is experimental!
Cyclic queries in graph-pattern matching pose new challenges to relational engines

\[
\text{triangles}(a, b, c) \leftarrow \text{R}(a, b), \text{S}(b, c), \text{T}(c, a)
\]
Worst-case optimal joins to the rescue

— proven to be worst-case optimal by AGM bound, e.g. for triangles in $O(N^{3/2})$
— no intermediary results
— Idea: build the join by a *variable-at-a-time* approach
— superiority for graph-pattern matching is well established 1, 2, 3

1 Join Processing for Graph Patterns: An Old Dog with New Tricks, Dung Nguyen et al, Grades 2015
2 From Theory to Practice: Efficient Join Query Evaluation in a Parallel Database System, Shumo Chu et al, Sigmod 2015
3 Distributed Evaluation of Subgraph Queries Using Worst-case Optimal Low-Memory Dataflows, Khaled Ammar et al, VLDB 2018
Our contributions

1. designing a scalable WCOJ for Spark
 — Which distribution scheme to use?
 — open-source
 — integrate the WCOJ with Cypher on Apache Spark (stretch goal)
2. specializing WCOJ to graph pattern matching
 — former literature indicates that this is the main use case
1st contribution: designing a scalable WCOJ in Spark
Background: Spark

— Spark distributes data over workers
— computation is organized in exchanging steps of local computations and shuffles
— joins work by shuffling the data such that the distribution allows local join algorithms
Hypercube shuffle: optimal distribution for n-ary joins

Idea

— organize p workers in a hypercube
— one dimension per variable
— configurable k_i size per dimension
— such that $p = \prod_i k_i$
— proven to be communication optimal

1 Optimizing Joins in a Map-Reduce Environment, Foto Afrati and Jeffrey Ullman, 2010

triangles(a, b, c) <- R(a, b), S(b, c), T(c, a)
Hypercube shuffle: optimal distribution for n-ary joins

\[\text{triangles}(a, b, c) \leftarrow R(a, b), \]
\[S(b, c), T(c, a) \]

\[
\begin{array}{ccc}
 a & b & c \\
1 & 2 & 1 & 2 \\
2 & 3 & 2 & 3 \\
2 & 4 & 2 & 4 \\
3 & 1 & 3 & 1 \\
\end{array}
\]

\((2, 0, \ast) (\ast, 0, 1) (2, \ast, 1)\)
Hypercube shuffle converges to full replication for larger queries

— analysis by theoretic estimation and simulation
— a lot of duplicated work
— not scalable in query size
— although being optimal
Our Solution: replicated *EdgeFrame*

— DataFrame specialized for edge relationship
— replicated on all workers
— shuffle free worst case optimal join operation
— uses compressed sparse row representation
— easily integrable into existing Spark projects
— open source
— *logically partitioned* (open research)
Parallelization via logical partitionings

— parallelization via logical partitioning: full dataset is on each worker but each worker only considers parts of it
— partition on the first attribute to bind by the WCOJ
— fight skew with Intel's adaptive query execution

1 Spark SQL Adaptive Execution at 100 TB, Carson Wang, 2018
2nd contribution: specializing WCOJ's to graph-pattern matching
Specializing WCOJ's to graph-pattern matching: idea

- backing data structure: compressed sparse row (CSR)
- code specialization
 - self-joins only
 - two attributes only
- logical optimizations
Specializing WCOJ's to graph-pattern matching: results

![Graph showing speedup comparison between Spark, WCOJ, and GraphWCOJ for various pattern matching tasks.](image-url)
Where to find my work?

https://github.com/PerFuchs

Also, I'm looking for PhD opportunities or challenging positions in industry. Passionate about distributed systems and graphs!
Take aways

— optimal distribution scheme does not scale
— therefore, replicate
— WCOJ should be specialized to graphs
— open source
List of datasets

<table>
<thead>
<tr>
<th>Name</th>
<th>Variant</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Network Benchmark(^1)</td>
<td>scale factor 1</td>
<td>10,278</td>
<td>453,032</td>
</tr>
<tr>
<td>Amazon co-purchase(^2)</td>
<td>2nd March</td>
<td>262,111</td>
<td>1,234,877</td>
</tr>
<tr>
<td>Twitter(^2)</td>
<td>social-circles</td>
<td>81,306</td>
<td>2,420,766</td>
</tr>
<tr>
<td>Amazon co-purchase(^2)</td>
<td>1st June</td>
<td>403,394</td>
<td>3,387,388</td>
</tr>
</tbody>
</table>

\(^1\) The LDBC Social Network Benchmark: Interactive Workload, Orri Erling et al, 2015

\(^2\) SNAP Datasets: Stanford Large Network Dataset Collection, Jure Leskovec and Andrej Krevl, 2014
Why are cyclic patterns important?

Facebook friends

Twitter followers

Bank fraud

1 Real-time twitter recommendation: online motif detection in large dynamic graphs, Pankaj Gupta et al, 2014

2 Fraud detection: Discovering connections with graph databases, Gorka Sadowski and Philip Rathle, 2015, Whitepaper
Do graphs fit into main memory?

— study of openly available graph datasets
 — SNAP Datasets¹
 — Laboratory for Web Algorithms²
— total number of graphs: 154
— all but 3 fit into 256GB of RAM
— maximum: 552 GB (Facebook 2011)

¹ SNAP Datasets: Stanford Large Network Dataset Collection, Jure Leskovec and Andrej Krevl, 2014
² The WebGraph Framework I: Compression Techniques, Paolo Boldi and Sebastiano Vigna, 2004